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The Temperature Factor of an Atom in a Rigid Vibrating Molecule. 
I. Isotropic Thermal Motion 
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The temperature factor of an atom in a molecular crystal has been derived in terms of the rigid-body 
parameters (u2) and (e)2), where (u2) is the mean-square amplitude of translational displacement of 
the molecule in any direction and (o)Z) is the mean-square amplitude of angular (librational) displace- 
ment about any axis through the centre of inertia of the molecule. The analysis, which is appropriate 
to a cubic crystal containing rigid molecules undergoing isotropic thermal motion, is correct to the 
second power of (co2); the second-order treatment is necessary for interpreting accurate Bragg intensity 
data such as those discussed in a subsequent paper. Substitution of the temperature factor into the 
structure-factor equation yields an expression containing terms which can be identified with the first, 
second and third cumulants of the 'cunmlant expansion' model of thermal motion. 

I. Introduction 

The conventional Debye-Waller treatment of the in- 
fluence of thermal motion on diffracted intensities (see, 
e.g., James, 1962) is restricted in several ways. One 
restriction relates to the use of the harmonic approx- 
imation in describing the displacements of the atoms 
from their equilibrium positions. The extension of the 
Debye-Waller treatment to include anharmonic effects 
has been considered by Dawson, Hurley & Maslen 
(1967) and by Willis (1969); experimental evidence in 
support of this modified treatment has been reported 
by Rouse, Willis & Pryor (1968) and by Cooper, Rouse 
& Willis (1968). 

A second restriction is that the vibrations of the 
atoms consist of rectilinear (translational) displace- 
ments from their equilibrium positions. For an atom 
undergoing librational motion it is usually assumed 
that the temperature factor can be expressed in a form 
appropriate to translational motion with an equivalent 
mean-square amplitude of displacement. This assump- 
tion requires that the atomic thermal-motion probabil- 

ity density function (p.d.f.) is centrosymmetric: this 
cannot be correct, as is evidenced by the need to apply 
a 'libration correction' (Cruickshank, 1956b, 1961) to 
the atomic coordinates after the coordinates have been 
refined by the centrosymmetric analysis. 

In this paper we show how the Debye-Waller treat- 
ment can be extended in a simple way to take into 
account skewness of the p.d.f, arising from torsional 
oscillations of a rigid molecule in a cubic crystal. We 
use the harmonic approximation to derive the atomic 
temperature factor in terms of <U2> and ((.D2), although 
there is no difficulty (see Appendix) in introducing an- 
harmonic terms into the analysis. (The parameter (u 2) 
is the mean-square amplitude of translational displace- 
ment of the molecule in any direction and (o)2) is the 
mean-square amplitude of angular (librational) dis- 
placement about any axis through the centre of inertia 
of the molecule.) The analysis is correct to the second 
power of (o) 2 ) whereas earlier treatments of this prob- 
lem (Cruickshank, 1956a; Kay & Behrendt, 1963; Paw- 
ley, 1964, 1966; Maslen, 1968) are correct to the first 
power only, i.e. for very small amplitudes of libration. 
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A treatment of higher-order effects in the rigid-body 
motion of hexamethylenetetramine is given by Dawson 
(1970) and is discussed later. We then derive an ex- 
pression for the structure factor containing terms which 
can be identified with the first, second and third cumu- 
lants of the 'cumulant expansion' model (Johnson, 
1970) of thermal motion. The first cumulant is shown 
to contain a factor 

1 - <o92> + ~-~-@92> 2 

which multiplies the fractional coordinates and rep- 
resents explicitly the libration correction. Thus least- 
squares refinement based on the new structure-factor 
expression generates coordinates which do not require 
any a posteriori modification. 

In the following paper (paper II: Pawley & Willis, 
1970) the analysis is generalized to any crystal con- 
taining rigid molecules which undergo anisotropic 
thermal motion about a site fixed by symmetry. The 
two quantities (u2), (oo2) of the isotropic treatment 
are replaced by twelve rigid-body parameters, six rep- 
resenting the symmetric translational tensor T and six 
representing the symmetric librational tensor L. 

Paper III (Duckworth, Willis & Pawley, 1970) de- 
scribes the r~esults of an experimental investigation by 
neutron diff?action of the cubic crystal hexamethylene- 
tetramine (HMT). The experimental p.d.f.'s for the 
three types of atom in this molecular crystal show 
deviations from the Gaussian form. We show that the 
second-order treatment ((c02) 2) of rigid-body motion, 
given in paper I, is better than the first-order treatment 
((co2>) in explaining the experimental results on HMT. 

displaced 
atom 

ndisplaced 
atom 

(a l ibration/ 

Centre of libration 

Fig. 1. Vectors in equation (2.6). 

It would be interesting to make a similar detailed test 
of the predictions in paper II, but unfortunately diffrac- 
tion data of the required accuracy pertaining to an 
anisotropic rigid-body system are not yet available. 

2. Derivation of the atomic temperature factor 

Our aim is to derive the temperature factor 
exp [-W~(Q)] for the tcth atom in the unit cell of a 
crystal containing rigid molecules undergoing com- 
bined translational and librational motion: Q is the 
diffraction vector defined by 

Q = k - k o ,  (2.1) 

where k, k0 are the wave-vectors of the scattered and 
incident radiation respectively (k= k0 = 2zc/2). 

The temperature factor is given by 

exp [ -  W~(Q)] = (exp (iQ. u~)>, (2.2) 

where u,~ is the thermal displacement of atom x and 
the angular brackets denote an average over a time 
which is long compared with the periods of the lattice 
vibrations but short on a macroscopic scale. At a later 
stage in the analysis we shall replace this time-average, 
in the usual way, by an ensemble average. 

u~ is the sum of the atomic displacements due to 
translational and librational motion of the molecule: 

U = U trans + U lib . (2.3) 

(The subscript K is dropped temporarily in order to 
simplify the notation.) Thus the exponent, W(Q), of 
the temperature factor is 

W ( Q ) =  W t r a n s ( Q )  -Jr W l t b ( Q )  (2.4) 
where 

- Wtrans(Q)=ln (exp (iQ. utrans)> (2.4a) 
and 

- Wlib(Q)=ln (exp (iQ. uUb)>. (2.4b) 

We shall assume that the libration axes are constrained 
by symmetry to intersect in a fixed point. This is equiv- 
alent to assuming that there is no correlation between 
the translational and librational modes of motion 
(Schomaker & Trueblood, 1968), as is implied by equa- 
tion (2.4) [see § 2(c)]. 

According to the conventional Debye-Waller theory, 
equation (2.4a) reduces to the expression 

W t r a n s ( Q )  = ½((Q. utrans)2> = ½Q2<bt2> (2 .5)  

where the mean-square translational displacement (u 2> 
is the same in all directions. In the remaining part of 
§ 2 we evaluate the corresponding expression for the 
librational contribution to W(Q) in terms of the iso- 
tropic parameter (092). We shall start from equation 
(2.4b) and ignore all terms in the analysis of higher 
order than (092) 2 . 

2.1 Expression for U l i b  

The first step is the evaluation of the librational con- 
tribution, u rib, to the total atomic displacement. Ac- 
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cording to Euler's theorem (Goldstein, 1950), a general 
displacement u ~ib of any atom in a rigid molecule con- 
strained to move about a fixed point ('centre of libra- 
tion') can be expressed as a finite rotation about some 
axis through the fixed point. If co= Itol represents the 
magnitude of this rotation, where ~ is along the axis 
of rotation and r is the vector from the centre of 
libration to the equilibrium position of the atom, then 

uHb=to h r (__sin _~) +[(r .  to)to_o92r] (1-c0s092 60) . (2.6) 

[For a proof of (2.6), which holds exactly for any finite 
rotation, see Schomaker & Trueblood (1968).] If o9 < l ,  
equation (2.6) reduces to 

U lib = to A r ,  (2.6a) 

which is the expression used by Cruickshank (1956a) 
and Pawley (1964, 1966). The quantities in (2.6) are 
illustrated in Fig. 1. 

In matrix notation (2.6) becomes 

° o10 (r)l 
( ) (22   1 3 (ri) 1 --~ COS O9 - -  092 -- 603 0")1092 

+ o92 o9,o9~ -o9~-o9~ o92o93 ! r2 
2 2 O) 10)3 0)2(03 - -  601 - -  ('02 ] r3 

(2.7) 

where 091, 092, 603 are the Cartesian components of to 
and ra, r2, r3 the Cartesian components of r. For the 
case of isotropic motion, we can, without any loss of 
generality, align the z axis along r, so that 

r l  = r 2 = 0  
and (2.8) 

r3=lr] = r ,  

where Irl is the distance of the undisplaced atom from 
the centre of libration. We also have the relations: 

sin co 
09 

and 

1 - cos co 

o92= o9~ +o9~ +ogl, 

10.)2_jl_ 1 
- 1 -  3t  5 f  ('D4 " ' "  

1 1 1 °)  4 . 

o92 - 2! - 4! °92@ 6! " " J 

(2.9) 

Substituting (2.8) and (2.9) into equation (2.7): 

0 
U liD - -  ( 1 - 1 ( . O 2  . . . )  O) 3 

- -  0)2 

- -  0) 2 - -  603 
+(½_~o92... ) 0910)2 

0916O3 

0 - g l  
091 

60,092 
-o9~-o91 

092093 
(-020,)3 

-o97-o9~ 

OF 

u l i b  = r(o92 +½O91O93, _ 0 9 1 + 1 0 ) 2 ( , 0 3 ,  _ =5011 2__ 12(,02 )2 

r 

- -  . . - -  4 0 ) ,  _6_o92(o92+¼o91o9~ _o9,+¼o92o9~, i 2_¼o9~) 

(2.1o) 

where terms of higher order than 094 are neglected. 

2.2 Expression.['or (exp ( iQ. u l i b ) )  

For a cubic crystal the diffraction vector Q, equa- 
tion (2.1), is given by 

q = 2re (hi, h2, 173) (2.11) 
a0 

where a0 is the lattice parameter and hi, h2, h3 are the 
indices of the reflecting plane. These indices will be 
referred to the same Cartesian system as the com- 
ponents of r, so that h3 is along r. Taking the scalar 
product of (2.10) and (2.1 l): 

2~zr 
Q • u l ib ~--- (hlo92 +½hlo91o93  - h2o91 +½h2o92o93 

ao  
7zr 

1 2 o92(hlo92 + ¼hlo91o93 -:h3o9,-½h3o9~)- iao 

__],/20.)i +¼h2o92o93 k 2 1 2 - -  4h3o91 - ~h3o92) • (2.12) 

2m" 
Putting fl= - - ,  equation (2.12) becomes 

a0 

Q .  u l i b  = f l (h lo92 - h20,)l) 

+ ½fl(hlo91o93 + h2o92o93 - -  h3o9 2 -  h3o922) 

+ ~/~(- hxog~o92- h,o9g- h,o92o9~ 
+ h2o9~ + h2o9,o922 + h2o9~o9~) 
+ & ~ ( -  hlo9~o9~- h,o9,o9~o93- h,o9,og~ 
- -  h2(DI2O92O93 - -  h2o932o93 -- h2o92o933 

+ h3094 + 2h3o92o9~ +h3o91o9322 
4 2 2  + h3o92.+ h3o92o93) 

=fl(A +½B +-~C +~-~4D), (2.13) 

where the quantities A, B, C, D represent the contents of 
the brackets enclosing successively the first, second, 
third and fourth order terms in o9. Equation (2.13) 
gives the complete set of terms in the expansion of 
Q .  u ~ib which are necessary in evaluating the temper- 
ature factor correct to (o92) 2 . 

( exp( iQ.  unb)) is now obtained by multiplying 
exp ( iQ. u rib) by the Boltzmann probability factor and 
averaging over all possible displacements. Thus 

f exp (iQ U l ib)  (-- V(to)/kBT)dto exp I 

(exp (iQ. u lib))= 

I exp ( -  V(to)/kBT)dto 

(2.14) 

where V(¢o) is the average potential "seen' by a single 
molecule as it executes librational motion, kB is Boltz- 
mann's constant and T is the absolute temperature. 
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For isotropic harmonic motion we can write the poten- 
tial in the form 

V(o)= V(0)) = V0 +½e0)2 ; (2.15) 

V0 is the potential at the equilibrium position (u lib = 0) 
and c~ is a constant which is readily shown to be 

c~= k ~rl(0)2) . 

Putting (2.13) and (2.15) into equation (2.14) gives 

Thus the librational contribution to W(Q) is 

wnb(Q) =½fl2(0) 2) (h~ +hg).  (2.18) 

Using the relation 

4z~2 (h2 +h~) QZ sin 2 0  = a0: 

where O is the angle between Q and r (see Fig. 2), 
(2.18) becomes 

Ifl°° exp [ifl(A +½B + { C + ~ D ) I  exp [-(0)2 +0)== +0)=a)/(2(0)Z))ld0)~d0)2do)3 
(exp (iQ. ulib)) = - ~  . . . .  . . . .  

II l - ,~ exp[--(0)2 +0)~ +0)~)/(2(0)2))]d0)ld0)zd0)3 
(2.16) 

2.3 Evaluation of integrals in equation (2.16) 
The integral in the deonominator of (2.16)is 

(27~(0)2)) 3/2 . 

The remaining integration in the numerator of (2.16) 
is not straightforward; it is instructive to evaluate it in 
stages which represent successively better approxima- 
tions to the final answer. 

(a) B = C = D = O  

The numerator of (2.16) simplifies to 

ISS~_ exp [ifl(hl0)z-hz0),) 

x exp [-(0)  2 +oo22 +0)])/(2(0)2))]d0),d0)zdco3. 

Using the standard formula 

(2.17) 

I ~ exp ( - a x  2) exp (2ibx) dx 

V;e p  (2.17a) 

Wlib(Q)=½Q=r 2 sin2 O(0)2). (2.19) 

The exponent W(Q) of the total temperature factor is 
obtained by adding the translational contribution, 
equation (2.5): 

W(Q)=½Q2((uZ)+r 2 sin 2 0(0)2)). (2.20) 

Equation (2.20) is the isotropic form of the temper- 
ature factor exponent first introduced by Cruickshank 
(1956a). It assumes an expression for u lib given by 
equation (2.6a), i.e. it ignores the component of libra- 
tional displacement parallel to r, and so it is necessary 
to introduce an a posteriori 'libration correction' to the 
atomic coordinates (Cruickshank, 1956b). This libra- 
tion correction appears explicitly when equation (2.16) 
is evaluated to a better approximation. 

(b) C=  D = 0  
The numerator of (2.16) is 

lIl~_ exp [ifl(A +½ B) 

x exp [-(0)2 +0)~ +0)])/(2(0)2))]d0)ad0)2d0)3, (2.21) 

(2.17) becomes 

(27r(0)2)) 3/2 exp [_½fl2(0)2) (h 2 +h~)]. 

o: / /  
~ r = (0,0,r) 

Fig.2. Definition of the angle O. 

and this can be evaluated exactly using the formula 
(2.17a). The final expression for Wlib(Q) works out as 

zt2r 2 h2 v 2 
Wlib(Q)-- - - lnr /+½(lnr/ '  + ln r / " )+  a~r/' + rf ; '  (2.22) 

where 
,1 = ( 2 @ 9 ) - '  

rarh3 7r2r Zh 2 
r/' = r /+  + .......... 

a0 4a02r/ 
rcirh3 ~z2r 2h 2 rc4r 4112 h22 

q " = r / +  + . . . . . . . . . . . . . . .  

a0 4ao2q 16~r/2r/' 
rcrh2 ( zc2r 2h2 1 

v = - - -  1+ 
ao 4a~)qrf ! " 

(2.22) is correct to the first power of (0)2) only, as we 
have assumed that C=D=O. Thus (2.22) can be sim- 
plified by ignoring terms in (0)z)2 and higher powers 
of (o)2), and this leads to the expression 
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WUb(Q)=iQ.  r(o)z) +½Q2 sin 2 0  r2(o)2). (2.23) 

The first term in (2.23) is a phase shift representing the 
libration correction: the effect of libration is to cause 
a displacement of the mean position of the atom by an 
amount r (o)2) towards the centre of libration. 

It is appropriate to discuss here the expressions for 
Wlib(Q) derived by Kay & Behrendt (1963), Maslen 
(1968) and Dawson (1969). All these authors assume 
that sin co=o) and cos o)= 1-So)Z, i.e. that C = D = 0  
in equation (2.16). Maslen's treatment is equivalent to 
the earlier treatment of Kay & Behrendt, but is re- 
stricted to one-dimensional librational motion so that 
the cross terms between the Cartesian components of 
[see equation (2.10)] do not appear. These cross terms 
are neglected also by Dawson. It can be shown that all 
three treatments are correct to (o)2), leading to equa- 
tion (2.23) for WUb(Q), but that all give different ex- 
pressions for Wnb(Q) when expanded to (o)z)2. 

(c) General case: A, B, C, D non-zero 
To evaluate the exponent 

- WUb(Q) = ln  (exp ( iQ.  ulib)) (2.24) 

for the general case, we substitute (2.16) into (2.24) 
and expand the logarithm using 

i 
In (exp iy)=i(y)-½(y2)+½(y)2_ 6 (y3) 

i i 
_ ~_ (y)3 + '2 (y) (y2) + 2_2~(y4)_¼(y)4 

_~(y2)Z_~(y)  (y3) +½(y)2(y2) . 
(2.25) 

The angular brackets in (2.25) indicate mean values. 
Putting y = Q .  unb=(A+½B+~C+_~gD ) into (2.25), 
WUb(Q) can be evaluated term by term, employing 
the relation 

translational contribution ½Q2(u2) to the right-hand 
side of equation (2.27). 

We noted earlier that there is no correlation be- 
tween the translational and librational contributions 
to W(Q). This is readily verified by writing 

- W(Q)=ln  (exp [iQ. (utrans-+-ulib)]) (2.28) 

and using equations (2.25) and (2.26) to evaluate the 
right-hand side of (2.28), where 

y = Q .  (U trans --{-ulib) . 

In this way we find that the coefficients of cross terms 
such as (u 2) (o)2) vanish identically. 

3.  S t r u c t u r e - f a c t o r  e x p r e s s i o n  

The structure-factor equation is given by 

F(Q)=  ~.f~ exp ( iQ.  r,~) exp [ -  W,~(Q)] ; (3.1) 
/¢ 

f,~ is the scattering amplitude (at rest) of the xth atom 
in the unit cell and r,~ its vector distance from the unit- 
cell origin, which coincides with the centre of inertia 
of the molecule. For simplicity, we assume that there 
is only one molecule in the unit cell; it is, of course, 
straightforward to extend the formalism to include 
several molecules, using the appropriate space group 
symmetry of the crystal. 

From the results derived in § 2(c) for W(Q), equa- 
tion (3.1) becomes 

F (Q)=  ~ f ~  exp [iQ. r ] ( 1 -  ((J)2) "~- 1-~-((.D2)2)] 
t¢ 

x exp [-½Q2((u2)+r~sin 2 0  ((.D 2) 

+r~cos 2 0  (0)2)2_11 z-,~TY2 s in20  (o.)2) 2] 

× exp [i½Q3r~cos O sin 2 0  (o)2)2]. (3.2) 

Ill  ~_ (flA +½flB+-~xflC+2-!¢flD)n exp [-(o)z~ +o)~+o)~)/(2(o)2))] do)ldo)2do)3 
(y+)= 

SlS_~ exp [-- (o)~ +o)~ +o)2)/(2Qoz))]doldo)2do)3 . 
(2.26) 

(The integrals in (2.26) reduce to the standard form 

_~ox n exp ( - a x  2) dx.) The terms quoted in the ex- 

pansion of In (exp iy), equation (2.25), are the only 
ones which contribute factors in (o)2) or (o)2)2 in the 
final expression for Wlib(Q). This expression, correct 
to (o)2)2, is 

WUb(Q) = iQ.  r((o)2) _ _l_~Z (o)2)2) 
+½QZrZ(sin2 6) < ( / ) 2 ) + C O S  2 0  (0.)2) 2 

- !z sin z O (o)z)2) 12 
-½iQ3r 3 cos O sin 2 0  (co2) 2 . (2.27) 

From equations (2.4) and (2.5), the exponent W(Q) of 
the total temperature factor is obtained by adding the 

A direct physical interpretation of the various com- 
ponents of (3.2) can be given if we assume (o)2)2=0. 
(3.2) then reduces to 

F ( Q ) =  ~.f~ exp [iQ. r~(1_ (o)2))] 
/'2 

exp( -½Q2(u2) )exp(  i 22 • 2 - ~ Q  r~sln O <O.)2)) ,  (3.3) 

where the first exponential represents the phase term 
in the structure-factor expression, modified by the 
libration correction 1-(o)2).  The second exponential 
is the translational contribution to the temperature 
factor; it can also be written in the well-known form 
exp ( -  Wtrans), where 

Wt~"s=SrrZ(uZ)t~ a"s sin 2 O/2 z , 
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<U2>~ arts being the mean-square translational displace- 
ment of the vibrating atom in the direction of the 
vector Q. The third exponential is the librational con- 
tribution to the temperature factor; this can also be 
written in the equivalent form exp ( -  waib), where 

W'ib= 8n2(u2)g b sin2 0/22, 

(u2)g b being the mean-square displacement due to li- 
bration projected along the direction of Q. 

Returning to the general structure factor expression 
(3.2), it is useful to compare this with the structure- 
factor expression derived from Johnson's 'cumulant 
expansion' model of thermal motion. Johnson (1969) 
expresses F(Q) in the form 

F(Q)=  ~,f~ exp (2nix'{&) exp ( -b~&hj )  
/¢ 

× exp ( -  ic'~k&hjhx) (3.4) 

where x~, b~j, c~jx are first, second, third cumulant co- 
efficients and the expansion is truncated after the third 
cumulant. The suffixes i, j, k = 1, 2, 3, and the dummy 
suffix convention is assumed. The cumulant coefficients 
are invariant to pair-wise interchange of indices, and 
so there is a maximum number of three independent 
coefficients x~ representing the fractional atomic co- 
ordinates of the ~cth atom, six coefficients b~'j represent- 
ing the Gaussian anisotropic temperature factors, and 
ten coefficients C~k representing the skewness of the 
probability density function. Comparison of (3.2) with 
(3.4) shows that the successive exponential terms in 
(3.2) can be identified with the first, second and third 
cumulants of the cumulant-expansion model. The 
adoption of the rigid-body assumption in deriving (3.2) 
introduces constraints between the cumulant coeffi- 
cients in addition to the constraints imposed by the 
point symmetry of the atoms: this is discussed later 
(paper III, Duckworth, Willis & Pawley, 1970) with 
particular reference to the interpretation of experimen- 
tal data on HMT. We note here that the skewness (third 
cumulant) term in (3.2) does not involve (co2), and so 
vanishes in the first-order treatment given in § 2(b). 
The first cumulant term in (3.2) contains the factor 

i _  <co2> 

to be identified as the libration correction. 

APPENDIX 

The harmonic treatment in § 2 can be extended readily 
to cover isotropic anharmonic thermal motion (see 
Willis, 1969) by writing the single-molecule potential as 

where 

V= V(u) + V(co) (A.1) 

V(bl) = ½0~tU 2 -]- ~tU 4 -1-... (A.2) 

V(CO) = ½~tco 2 + yzco4 + . . . .  (A.3) 

0ct, 0q are constants determining the magnitude of the 
harmonic component of the translational, librational 
potential functions; the remaining constants yt, 7t . . .  
determine the magnitude of the isotropic anharmonic 
components. Anisotropic anharmonic terms can be in- 
cluded in (A.2) and (A.3), in the way described by 
Willis (1969), and also cross-terms in u and co. 

If the analysis in § 2 is repeated using this modified 
form of potential function, we find that 

exp [ -  W(Q)]anharm°nic=exp [-- W(Q)] harm°nle 

+ O(<u2)3)+ O(<co2>3). (A.4) 

Thus by limiting the theory to small displacements such 
that (ua) 3, (o)2)3 and higher powers can be neglected, 
the final structure-factor expression (3.2) remains un- 
changed for anharmonic motion. 
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